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Resistive—ideal transition of pressure-driven instabilities
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F. Ebrahimi, S. C. Prager, and C. R. Sovinec
University of Wisconsin—Madison, Madison, Wisconsin 53706

(Received 14 January 2002; accepted 8 April 2002

The linear magnetohydrodynamics stability of local and global resistive pressure-driven instabilities

is examined computationally in a cylinder. Both instabilities are resistive from beta values of zero

up to several times the Suydam limit. Both transition to ideal modes at higher beta values. No

sudden change in growth rate occurs at the Suydam limit. The global pressure-driven modes, of
tearing parity, will likely be important in high beta plasmas, such as obtained in the reversed field

pinch. © 2002 American Institute of Physic§DOI: 10.1063/1.1481860

The linear stability of ideal and resistive pressure-drivenstudies of the growth rate have been accomplished using
interchange modes is an old subject that has received extepigenmode analysignatrix shooting.4~1°
sive analysis. Its relevance today is somewhat heightened, as In the present work, we employ initial value computa-
experiments with unfavorable magnetic curvature, such ation to evaluate the growth rate and radial structure, for an
reversed field pincheRFP and stellarators, are operating arbitrary wave number, of the resistive pressure-driven insta-
with pressure at or above the ideal interchange stability limitbility. We find two results. First, for a rather wide range of
In stellarators beta values above the Mercier limit are obbeta, from zero to several times the Suydam limit, the high-
tained in experiment, with no observation of instabiliffhe ~ k interchange mode is resistive. It is resistive in its radial
investigation of global resistive modes have been examinegtructure(which results in reconnectignand its growth rate,
in stellarators in currentless equilibria applicable to the Hewhich is small and scales & ** at low Ds, and more
liotron DR devicé? In the RFP, control of the current density Weakly with S asDg increases. The instability transitions to
profile has succeeded in substantially reducing currentan ideal mode at very high beta valudsdj, several times
driven tearing instability and increasing beta to the point thathe Suydam limit. Only at these very high beta values is the
pressure-driven modes may begin to be consequéntial.

this paper we examine the behavior of the linear resistive 1.07 . . . .

interchange instability in current-carrying cylindrical plas- r ]

mas, as beta varies from less than the ideal stakiStyy- o.&r Bz ]

dam limit to much larger than the ideal limit. o6l Be |
The ideal interchange instability in a cylinder has been [ ]

examined in some detail, following the calculation by Suy- 0.4f ]

dam that a localized pressure-driven instability in a bad cur- ]

vature region, is excited if the stability parametBrg o.z2r ]

= —(87-rp’/r)(q/qu’)z|rs>O.25,4 where q is the safety o O' ]

factor, p is the pressure and ( Fd/dr. Subsequently, the T

dependence of the analytic growth rate®g(in the limit of —o.21L L ' ' ~

large wave numbek) has been treated by several authtts. 00 0.2 04 i 06 05 1.0

In many of these treatments the inertial term is included in a

layer around the resonant surface only. The eigenfunction

solution in the outer region is matched to that obtained in the 1.2 ' ' ' '

layer/~° The result is that the growth rate dependsDg 1.0

(which is proportional to bejaas yma~Cexp (—2m/\a),

whereo=Dg—0.25. Thus, the growth rate is exponentially 0.8

small near the ideal limitl s=0.25), becoming large fdDg o 0.6

values well above this limit. Numerical values for the growth
rate of ideal interchange modes have also been obtained in a 0.4
diffuse linear pincht%!

The addition of small resistivity defeats the shear stabi- 0.2
lization and resistive interchange modes become always un- 0.0 : s : s
stable in a cylindet? Matching the outer solution to a layer 0.0 0.2 0.4 0.6 0.8 1.0
that includes resistivity yields an analytical growth rate that r
scales with Lundquist numbeg, asy~S~ 113 13 Numerical FIG. 1. Equilibrium magnetic field and pressure profil@ (B, ,p).
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FIG. 2. The growth rate,yrs, of the m=1, k=10.5 mode vsDg. 109 104 10° 108 107 108 10°
S=1C, 6,=1.6, a=4, 5=3, p;=0.9. The triangles are computational S

results corresponding to resistive modes and the square boxes correspond . . . _
to pure ideal modes. The solid line is the analytical growth rate ofFIG' 4. Growth rate scaling of localized interchange matie 1, k=10.5,

ideal interchange modes. The transition from resistive to ideal interWith Lundquist numbes, for various values oDs. At low Ds (<0.25)

change modes occurs at highs~1.0. The dashed vertical line is the this scaling is resistive and at highs (high B) is ideal.
Suydam limit.

The three dimensional nonlineaess codé”’ is used to
solve the following set of compressible resistive MHD equa-

mode ideal in its radial structure and its growth réatdich = "7 5 . . .
ode idea ts radial structure and its growth réiic tions in cylindrical geometry in the linear regime:

becomes independent & and scales withD g as described
by ideal MHD). Second, we find that for the RFP global IA

pressure-driven modes are important. These modes transition —=SVXB—7J,
from resistive to ideal as beta increases, similar to that of the

interchange. Vv - —  Bo
P = SpV-VV+SIX B+vV2V—87VP,
1.0F 3 §=VXK, J_ZVXE
0.8F (@ [ E
o 0-6F 3 JP _ _
0.4F 3 —=-SV-(PV)-S(y—1)PV-V,
2F 3 ot
0.0E J ) ) _ o o
0.0 0.2 0.4 0.6 0.8 1.0 where time and radius are normalized to resistive diffusion
r time rr=4ma?/c?7n, and minor radius aS= 7/ 7, is the
Lundquist numbery is the viscosity coefficient, which mea-
1.0E7 ) 3 sures the ratio of characteristic viscosity to resistivitye
oo E magnetic Prandtl numbgrand B,=8mP,/B3 is the beta
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FIG. 5. Growth rate of lowk pressure-driven moden=1 k=1.8 mode vs

FIG. 3. Radial magnetic field magnitude vs radius far Dg=0.23, y7a Bo- The triangles denote resistive modes and the square boxes denote pure
=6.5x10"3%, (b) Dg=0.756, yr,=3.3x1072, (c) Ds=0.95, yr,=5.4 ideal modes. Some of the points are compute®=a10* (dashed curvg and
X1072, (d) Dg=1.72, y7,=0.35. For all case§=10°, m=1, k=10.5. while some are aS=10° (solid curve.
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normalized to the axis value. The mass dengity assumed tive instabilities can be distinguished by the magnitude of the
to be uniform in space and time. The equations are fullyradial magnetic fieldB, . The radial field is nonzero at the
compressible and describe both shear and compressional Aksonant surface only for a resistive mode. We see that the
fvén waves, as well as resistive instabilities. To resolve themode structure is resistive f@s<0.9 [Figs. 3a) and 3b)]
ideal and resistive interchange modes in the linear computaand ideal forDg>0.9 [Figs. 3c¢) and 3d)], in agreement
tion, the maximum timestep has been examined for convemwith the growth rates of Fig. 2.
gence. The growth rate solutions are converged in timestep The transition from resistive to ideal modes is also evi-
and spatial resolution to the level of 2% and 1%, respecdent in theS dependence of the growth rate(Fig. 4). At
tively. The code uses the finite difference method for thelow Dg, y scales a§™ *° (resistive scaling whereas at very
radial coordinate. high Dg, 7 is roughly independent d (ideal scaling. The

To isolate the pressure-driven modes, an equilibriunDg value at which the mode transitions from a resistive to an
which is stable to resistive current-driven modes is chosefjeal mode depends upd® The transition value foDg
(by theA’ criterion). The equilibrium parallel current profile decreases wit!$. This can be inferred from Fig. 4. The tri-
and pressure profile arg(r)=J-B/B?=26o(1—r“) and  angles are resistive modésom the radial structueand the
pP(r)=po(1—par’), respectively, where, 6o, & Poandp;  square boxes are ideal. For values{1(f—10') of the
are free constants. Other equilibrium quantities can be_COYTbresent experiments, the transition occursDat-0.7—1.0
puted from the ¢ and z components of VXB=N(r)B  (or 8,~40-60%) well above experimental beta values.

+ BoBXVp(r)/2B? (see Fig. 1 High-k localized modes can be stabilized by finite Lar-
First, we examine highly localized interchange modes bymor radius effect&!® Thus, global, lowk pressure-driven
choosing modes with high axial wave number,The depen- modes may be more important for the RFP. The ideal stabil-
dence of the growth rate ddg= —(87-rp’/r)(q/BZq’)2|rs is ity of global pressure-driven modes have been examined in
shown in Fig. 2. The mode selectérzimuthal mode number the past and it has been shown that these modes become
m=1, k=10.5 is resonant ar/a=0.78. We see that the unstable with the violation of Suydam criterion as well and

growth rate is always nonzero and increasing vit, but  have kink-like behaviol" Prior calculation of the growth
follows the analytical ideal value only dbg>1.0. The rate for the resistive global pressure-driven modes also show
growth rate at loweD g values is much greater than the ideal an explicit dependence on the local paramddgy(as well as
growth rate. It increases smoothly through the Suydam limithe global parametexs® Here, we have examined the growth
(Ds=0.25), which plays no role for resistive instability. As rate and radial structure of global modes, and find that they
expected, the growth rate dependsgonly, rather than its  also display a transition from resistive to ideal instability as
constituents 8, or magnetic shear, separately. beta increases. The growth rate for the1, k=1.8 mode is
The radial structure of instability also indicates that ashown in Fig. 5. The triangles correspond to resistive modes
transition from a resistive to ideal interchange mode occurgas judged from the radial structujeshile the boxes corre-
at D¢~ 1.0 (for this particularm, k andS). Ideal and resis- spond to ideal modes. The mode is unstable at low beta

1.0 1.0F ¢ ;
0.8 E ©
08 1% ]
0.4 O‘O
0.2 7 1
0.0 -05 A
0.0 08 10 00 02 04 06 08 10 FIG. 7. Radial magnetic fieldg;) and radial velocity
r r (v,) eigenfunctions for global kinkm=1, k=2) and
localized interchangém= 1, k=45) modes in the ideal
1.0F () : 1.0 limit (S=10F, Dg=0.9). (a) B, for k=2, (b) v, for k
. 08 @
b i 1 : =2, (c) B, for k=45, (d) v, for k=45.
0.5 ' 06k
> { >
o] o
-05 : 0.0

00 02 04 06 08 10 00 02 04 06

Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 9, No. 6, June 2002 Resistive-ideal transition of pressure-driven instabilities . . . 2473

0.10[ - ' ' (Lundquist number We find that the Suydam criterion is not
[ ] very relevant, in agreement with an earlier analytical calcu-
lation of ideal growth rates. The localized interchange is re-
sistive (in growth rate and radial structyrat beta values up
to several times the Suydam limit, transitioning to an ideal
mode at extremely high beta. No sudden changes in growth
rate occur at the Suydam limit. This result may be consistent
with the apparent absence of localized instability onset in
experiments operating at or above the SuydamMerciep
stability limit.! For the RFP, we find that global pressure-
0.01 L. T R T driven modegdof tearing spatial pariyare equally unstable
0 20 40 60 80 and have a similar transition from resistive to ideal as beta
k increases. Since the localized modes are more subject to sta-
FIG. 8. Wave number spectrum of ideal pressure-driven modeB.at bilization mechanisms beyond MHBuch as finite Larmor
~1.0, S=10°. Triangles denote modes with a radial structure with tearing radius stabilizatio}) the global modes will |ike|y be more
made parity; boxes denote interchange parity. influential in the reversed field pinches at high beta. In future
studies we will examine the nonlinear behavior of these in-
stabilities.
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